		П	Semest	و۲	[Nrsi	Design &	Embedded system
USN							12EC047

M.Tech. Degree Examination, Dec.2013/Jan.2014 Low Power VLSI Design

Max. Marks:100 Time: 3 hrs.

Note: 1. Answer any FIVE full questions.

2. Answer in brief with design, example wherever relevant.

- Explain the need for low power consumption in VLSI designs. (08 Marks)
 - Explain in brief the following effects of influencing Threshold voltage in submicron MOSFET devices:
 - (i) Short channel length effect.
 - (ii) Narrow gate wide effects.
 - (iii) Reverse short channel effect.

(12 Marks)

- With usual notation, derive the expression for dynamic power dissipation in CMOS inverter. 2
 - b. Discuss the impact of technology scaling device innovations to achieve low power and high speed designs.
- Explain the concept of gate level power estimation with an example of 2 input NAND gate. 3 (10 Marks) Extend it to gate level power analysis flow.
 - b. Identify the characteristics of architecture level design representation and name some building blocks of design at architectural level. Discuss power model based on activities. (10 Marks)
- Compare power estimation techniques based on simulation and probability theory. Draw the 4 (10 Marks) flow diagram of power estimation.
 - b. Given $y = x_1x_2 + x_1x_3$ where x_i , i = 1, 2, 3 are mutually independent. If $z = x_1\overline{x_2} + y$, then (06 Marks) determine P(z) and P(y).
 - Determine signal probability of f = ab + c using BDD.

(04 Marks)

- Demonstrate power saving at logic level with suitable examples through gate reorganization. 5 a. (12 Marks) signal getting and logic encoding techniques.
 - Describe precomputation logic optimization with an example.

(08 Marks)

- Describe two different schemes of clock tree driving in the context of VLSI design with the 6 help of figure.
 - Define zero skew and tolerable skew. Explain the concept of tolerable skew in a typical synchronous system with a pipelined / parallel architecture. Identify two cases of clock skew (10 Marks) resulting into proper tolerable skew.
- Explain power analysis and estimation technique at algorithm level. (10 Marks) 7 a.
 - How do you optimize power consumption for design case like FIR filter? (10 Marks)
- Write technical notes on the following: 8
 - Monte Carlo simulation.
 - Power estimation using entropy.
 - Sizing an inverter chain.
 - Low power digital cell library.

(20 Marks)